Adesope, O. O., Trevisan, D. A., & Sundararajan, N. (2017). Rethinking the use of tests: A meta-analysis of practice testing.
Review of Educational Research,
87(3), 659–701.
https://doi.org/10.3102/0034654316689306
Azevedo, R., & Cromley, J. G. (2004). Does
Training on
Self-Regulated Learning Facilitate Students’
Learning With Hypermedia?
Journal of Educational Psychology,
96(3), 523–535.
https://doi.org/10.1037/0022-0663.96.3.523
Baars, M., Wijnia, L., de Bruin, A., & Paas, F. (2020). The relation between students’ effort and monitoring judgments during learning:
A meta-analysis.
Educational Psychology Review,
32(4), 979–1002.
https://doi.org/10.1007/s10648-020-09569-3
Bürkner, P.-C. (2017).
Brms :
An R package for bayesian multilevel models using
Stan.
Journal of Statistical Software,
80(1).
https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2024). Handle missing values with brms.
Choi, H., Jovanovic, J., Poquet, O., Brooks, C., Joksimović, S., & Williams, J. J. (2023). The benefit of reflection prompts for encouraging learning with hints in an online programming course.
The Internet and Higher Education,
58, 100903.
https://doi.org/10.1016/j.iheduc.2023.100903
David, L., Biwer, F., Baars, M., Wijnia, L., Paas, F., & De Bruin, A. (2024). The relation between perceived mental effort, monitoring judgments, and learning outcomes:
A meta-analysis.
Educational Psychology Review,
36(3), 66.
https://doi.org/10.1007/s10648-024-09903-z
de Bruin, A. B. H., Biwer, F., Hui, L., Onan, E., David, L., & Wiradhany, W. (2023). Worth the effort: The start and stick to desirable difficulties (
S2D2) framework.
Educational Psychology Review,
35(2), 41.
https://doi.org/10.1007/s10648-023-09766-w
Dunlosky, J., & Rawson, K. A. (2012). Overconfidence produces underachievement:
Inaccurate self evaluations undermine students’ learning and retention.
Learning and Instruction,
22(4), 271–280.
https://doi.org/10.1016/j.learninstruc.2011.08.003
Golke, S., Steininger, T., & Wittwer, J. (2022). What makes learners overestimate their text comprehension?
The impact of learner characteristics on judgment bias.
Educational Psychology Review,
34(4), 2405–2450.
https://doi.org/10.1007/s10648-022-09687-0
Graham, J. W. (2009). Missing data analysis: Making it work in the real world.
Händel, M., de Bruin, A. B. H., & Dresel, M. (2020). Individual differences in local and global metacognitive judgments.
Metacognition and Learning,
15(1), 51–75.
https://doi.org/10.1007/s11409-020-09220-0
Hoch, E., Fleig, K., & Scheiter, K. (2023). Can
Monitoring Prompts Help to
Reduce a
Confidence Bias When Learning With Multimedia?
Zeitschrift für Entwicklungspsychologie Und Pädagogische Psychologie,
55(2-3), 77–90.
https://doi.org/10.1026/0049-8637/a000279
Koriat, A., Sheffer, L., & Ma’ayan, H. (2002). Comparing objective and subjective learning curves:
Judgments of learning exhibit increased underconfidence with practice.
Journal of Experimental Psychology: General,
131(2), 147–162.
https://doi.org/10.1037/0096-3445.131.2.147
Maki, R. H., Shields, M., Wheeler, A. E., & Zacchilli, T. L. (2005). Individual differences in absolute and relative metacomprehension accuracy.
Journal of Educational Psychology,
97(4), 723–731.
https://doi.org/10.1037/0022-0663.97.4.723
McIntee, S.-E., Goulet-Pelletier, J.-C., Williot, A., Deck-Léger, E., Lalande, D., Cantinotti, M., & Cousineau, D. (2022). (
Mal)
Adaptive cognitions as predictors of statistics anxiety.
Statistics Education Research Journal,
21(1), 5–5.
https://doi.org/10.52041/serj.v21i1.364
Michael, B. (2021).
E-Assessment: automatische Generierung parametrisierter Aufgaben für mathematische Assessments in E-Learning-Systemen [PhD thesis, Doctoral dissertation, Technische Universit
ät Ilmenau].
https://doi.org/10.22032/DBT.49387
Panadero, E., Brown, G. T. L., & Strijbos, J.-W. (2016). The future of student self-assessment: A review of known unknowns and potential directions.
Educational Psychology Review,
28(4), 803–830.
https://doi.org/10.1007/s10648-015-9350-2
Prinz, A., Golke, S., & Wittwer, J. (2020). How accurately can learners discriminate their comprehension of texts?
A comprehensive meta-analysis on relative metacomprehension accuracy and influencing factors.
Educational Research Review,
31, 100358.
https://doi.org/10.1016/j.edurev.2020.100358
Sarac, S., & Tarhan, B. (2009). Calibration of comprehension and performance in L2 reading. International Electronic Journal of Elementary Education, 2(1), 167–179.
Schafer, J. L., & Graham, J. W. (2002). Missing data:
Our view of the state of the art.
Psychological Methods,
7(2), 147–177.
https://doi.org/10.1037/1082-989X.7.2.147
Schraw, G. J. (2009). A conceptual analysis of five measures of metacognitive monitoring.
Metacognition and Learning,
4(1), 33–45.
https://doi.org/10.1007/s11409-008-9031-3
Seufert, T. (2018). The interplay between self-regulation in learning and cognitive load.
Educational Research Review,
24, 116–129.
https://doi.org/10.1016/j.edurev.2018.03.004
Seufert, T. (2020). Building bridges between self-regulation and cognitive load—an invitation for a broad and differentiated attempt.
Educational Psychology Review,
32(4), 1151–1162.
https://doi.org/10.1007/s10648-020-09574-6
Trassi, A. P., Leonard, S. J., Rodrigues, L. D., Rodas, J. A., & Santos, F. H. (2022). Mediating factors of statistics anxiety in university students: A systematic review and meta-analysis.
Annals of the New York Academy of Sciences,
1512(1), 76–97.
https://doi.org/10.1111/nyas.14746
Zimmerman, B. J. (2000). Attaining
Self-Regulation:
A Social Cognitive Perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.),
Handbook of Self-Regulation (pp. 13–39). Academic Press.
https://doi.org/10.1016/B978-012109890-2/50031-7